Hyers-ulam stability of functional equations with a square-symmetric operation.
نویسندگان
چکیده
The stability of the functional equation f(x composite function y) = H(f(x), f(y)) (x, y in S) is investigated, where H is a homogeneous function and composite function is a square-symmetric operation on the set S. The results presented include and generalize the classical theorem of Hyers obtained in 1941 on the stability of the Cauchy functional equation.
منابع مشابه
A Hyers-Ulam-Rassias stability result for functional equations in Intuitionistic Fuzzy Banach spaces
Hyers-Ulam-Rassias stability have been studied in the contexts of several areas of mathematics. The concept of fuzziness and its extensions have been introduced to almost all branches of mathematics in recent times.Here we define the cubic functional equation in 2-variables and establish that Hyers-Ulam-Rassias stability holds for such equations in intuitionistic fuzzy Banach spaces.
متن کاملStability of generalized Newton difference equations
In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...
متن کاملHYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS ON FUZZY NORMED LINER SPACES
In this paper, we use the denition of fuzzy normed spaces givenby Bag and Samanta and the behaviors of solutions of the additive functionalequation are described. The Hyers-Ulam stability problem of this equationis discussed and theorems concerning the Hyers-Ulam-Rassias stability of theequation are proved on fuzzy normed linear space.
متن کاملQuadratic $alpha$-functional equations
In this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-Archimedean number with $alpha^{-2}neq 3$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the quadratic $alpha$-functional equation (0.1) in non-Archimedean Banach spaces.
متن کاملHyers-Ulam stability of monomial functional equations on a general domain.
In the present paper the Hyers-Ulam stability of monomial functional equations for functions defined on a power-associative, power-symmetric groupoid is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 22 شماره
صفحات -
تاریخ انتشار 1998